Nitrogen

NITROGEN

Sejarah

Nitrogen (Latin nitrum, Bahasa Yunani Nitron berarti “soda asli”, “gen”, “pembentukan”) secara resmi ditemukan oleh Daniel Rutherford pada 1772, yang menyebutnya udara beracun atau udara tetap. Pengetahuan bahwa terdapat pecahan udara yang tidak membantu dalam pembakaran telah diketahui oleh ahli kimia sejak akhir abad ke-18 lagi. Nitrogen juga dikaji pada masa yang lebih kurang sama oleh Carl Wilhelm Scheele, Henry Cavendish, dan Joseph Priestley, yang menyebutnya sebagai udara terbakar atau udara telah flogistat. Dia memisahkan oksigen dan karbon dioksida dari udara dan menunjukkan gas yang tersisa tidak menunjang pembakaran atau mahluk hidup. Pada saat yang bersamaan ada beberapa ilmuwan lainny yang mengadakan riset tentang nitrogen. Mereka adalah Scheele, Cavendish, Priestley, dan yang lainnya. Mereka menamakan gas ini udara tanpa oksigen.

Gas nitrogen adalah cukup lemas sehingga dinamakan oleh Antoine Lavoisier sebagai azote, daripada perkataan Yunani αζωτος yang bermaksud “tak bernyawa”. Istilah tersebut telah menjadi nama kepada nitrogen dalam perkataan Perancis dan kemudiannya berkembang ke bahasa-bahasa lain.

Senyawa nitrogen diketahui sejak Zaman Pertengahan Eropa. Ahli alkimia mengetahui asam nitrat sebagai aqua fortis. Campuran asam hidroklorik dan asam nitrat dinamakan akua regia, yang diakui karena kemampuannya untuk melarutkan emas. Kegunaan senyawa nitrogen dalam bidang pertanian dan perusahaan pada awalnya ialah dalam bentuk kalium nitrat,terutama dalam penghasilan serbuk peledak (garam mesiu), dan kemudiannya, sebagai baja dan juga stok makanan ternak kimia.

 

 

 

Nitrogen atau zat lemas adalah unsur kimia dalam tabel periodik yang memiliki lambang N dan nomor atom 7. Biasanya ditemukan sebagai gas tanpa warna, tanpa bau, tanpa rasa dan merupakan gas diatomik bukan logam yang stabil, sangat sulit bereaksi dengan unsur atau senyawa lainnya. Dinamakan zat lemas karena zat ini bersifat malas, tidak aktif bereaksi dengan unsur lainnya.

Nitrogen adalah zat non logam, dengan elektronegatifitas 3.0. Mempunyai 5 elektron di kulit terluarnya. Oleh karena itu trivalen dalam sebagian besar senyawa. Nitrogen mengembun pada suhu 77K (-196oC) pada tekanan atmosfir dan membeku pada suhu 63K (-210oC).

Gas nitrogen (N2) terkandung sebanyak 78,1% di udara. Sebagai perbandingan, atmosfir Mars hanya mengandung 2,6% nitrogen. Dari atmosfir bumi, gas nitrogen dapat dihasilkan melalui proses pencairan (liquefaction) dan distilasi fraksi. Nitrogen ditemukan pada mahluk hidup sebagai bagian senyawa-senyawa biologis.

Nitrogen mengisi 78,08 persen atmosfir Bumi dan terdapat dalam banyak jaringan hidup. Zat lemas membentuk banyak senyawa penting seperti asam amino, amoniak, asam nitrat, dan sianida.

 

Unsur

Kimiawan Perancis Antoine Laurent Lavoisier menamakan nitrogen azote, yang artinya tanpa kehidupan. Walaupun begitu, senyawa-senyawa nitrogen ditemukan di makanan, pupuk, racun dan bahan peledak. Sebagai gas nitrogen tidak bewarna, tidak memiliki aroma dan dianggap sebagai inert element (elemen yang tak bereaksi). Sebagai benda cair, ia juga tidak bewarna dan beraroma dan memiliki ketampakan yang sama dengan air. Gas nitrogen dapat dipersiapkan dengan memanaskan solusi amonium nitrat (NH4NO3) dalam air.

 

Senyawa nitrogen

Hidrida utama nitrogen ialah amonia (NH3) walaupun hidrazina (N2H4) juga banyak ditemukan. Amonia bersifat basa dan terlarut sebagian dalam air membentuk ion ammonium (NH4+). Amonia cair sebenarnya sedikit amfiprotik dan membentuk ion ammonium dan amida (NH2); keduanya dikenal sebagai garam amida dan nitrida (N3-), tetapi terurai dalam air.

Gugus bebas amonia dengan atom hidrogen tunggal atau ganda dinamakan amina. Rantai, cincin atau struktur hidrida nitrogen yang lebih besar juga diketahui tetapi tak stabil.

Natrium nitrat (NaNO3) dan kalium nitrat (KNO3) terbentuk oleh dekomposisi bahan-bahan organik dengan senyawa-senyawa logam tersebut. Dalam kondisi yang kering di beberapat tempat, saltpeters (garam) ini ditemukan dalam jumlah yang cukup dan digunakan sebagai pupuk. Senyawa-senyawa inorganik nitrogen lainnya adalah asam nitrik (HNO3), ammonia (NH3) dan oksida-oksida (NO, NO2, N2O4, N2O), sianida (CN-), dsb. Siklus nitrogen adalah salah satu proses yang penting di alam bagi mahluk hidup. Walau gas nitrogen tidak bereaksi, bakteri-bakteri dalam tanah dapat memperbaiki nitrogen menjadi bentuk yang berguna (sebagai pupuk) bagi tanaman. Dengan kata lain, alam telah memberikan metode untuk memproduksi nitrogen untuk pertumbuhan tanaman. Binatang lantas memakan tanaman-tanaman ini dimana nitrogen telah terkandung dalam sistim mereka sebagai protein. Siklus ini lengkap ketika bakteria-bakteria lainnya mengubah sampah senyawa nitrogen menjadi gas nitrogen. Sebagai komponen utama protein, nitrogen merupakan bahan penting bagi kehidupan.

 

Amonia
Amonia (NH3) merupakan senyawa komersil nitrogen yang paling penting. Ia diproduksi menggunakan proses Haber. Gas natural (metana, CH4) bereaksi dengan uap panas untuk memproduksi karbon dioksida dan gas hidrogen (H2) dalam proses dua langkah. Gas hidrogen dan gas nitrogen lantas direaksikan dalam proses Haber untuk memproduksi amonia. Gas yang tidak bewarna ini bau yang menyengat dapat dengan mudah dicairkan. Bahkan bentuk cair senyawa ini digunakan sebagai pupuk nitrogen. Amonia juga digunakan untuk memproduksi urea (NH2CONH2), yang juga digunakan sebagai pupuk dalam industri plastik, dan dalam industri peternakan sebagai suplemen makanan ternak. Amonia sering merupakan senyawa pertama untuk banyak senyawa nitrogen.

Isotop

Ada 2 isotop Nitrogen yang stabil yaitu: 14N dan 15N. Isotop yang paling banyak adalah 14N (99.634%), yang dihasilkan dalam bintang-bintang dan yang selebihnya adalah 15N. Di antara sepuluh isotop yang dihasilkan secara sintetik, 1N mempunyai paruh waktu selama 9 menit dan yang selebihnya sama atau lebih kecil dari itu.

Peringatan

Limbah baja nitrat merupakan penyebab utama pencemaran air sungai dan air bawah tanah. Senyawa yang mengandung siano(-CN) menghasilkan garam yang sangat beracun dan bisa membawa kematian pada hewan dan manusia.

Nitrogen dalam perindustrian

Peranan nitrogen dalam perindustrian relatif besar dan industri yang menggunakan unsur dasar nitrogen sebagai bahan baku utamanya disebut pula sebagai industri nitrogen. Nitrogen yang berasal dari udara merupakan komponen utama dalam pembuatan pupuk dan telah banyak membantu intensifikasi produksi bahan makanan di seluruh dunia. Pengembangan proses fiksasi nitrogen telah berhasil memperjelas berbagai asas proses kimia dan proses tekanan tinggi serta telah menyumbang banyak perkembangan di bidang teknik kimia.

Sebelum adanya proses fiksasi (pengikatan) nitrogen secara sintetik, sumber utama nitogen untuk keperluan pertanian hanyalah bahan limbah dan kotoran hewan, hasil dekomposisi dari bahan-bahan tersebut serta amonium sulfat yang didapatkan dari hasil sampingan pembuatan kokas dari batubara. Bahan-bahan seperti ini tidak mudah ditangani belum lagi jumlahnya yang tidak mencukupi semua kebutuhan yang diperlukan.

Salpeter Chili, salpeter dari air kencing hewan dan manusia, dan amonia yang dikumpulkan dari pembuatan kokas menjadi penting belakangan ini tetapi akhirnya disisihkan lagi oleh amonia sintetik dan nitrat. Amonia merupakan bahan dasar bagi pembuatan hampir semua jenis produk yang memakai nitrogen.

Catatan pertama mengenai usaha pembentukan senyawa nitrogen sintetis pertama dilakukan oleh Priestley dan Cavendish yang melewatkan percikan bunga api listrik di dalam bejana berisi udara bebas dan akhirnya mendapatkan nitrat setelah sebelumnya melarutkan oksida yang terbentuk dalam reaksi dengan alkali. Penemuan ini cukup besar di masanya, mengingat kebutuhan senyawa nitrogen untuk pupuk yang besar namun sayangnya alam tidak cukup untuk memenuhinya. Karena itu, adanya senyawa nitrogen yang dapat dibuat di dalam laboratorium memberikan peluang baru.

Namun usaha komersial dari proses ini tidak berjalan dengan mudah mengingat banyaknya kebutuhan energi yang besar dan efisiensinya yang terlalu rendah. Setelah ini banyak proses terus dikembangkan untuk perbaikan. Nitrogen pernah juga diikatkan dari udara sebagai kalsium sianida, namun tetap saja proses ini masih terlalu mahal. Proses-proses lain juga tidak terlalu berbeda, seperti pengolahan termal atas campuran oksida nitrogen (NOX), pembentukan sianida dari berbagai sumber nitrogen, pembentukan aluminium nitrida, dekomposisi amonia dan sebagainya. Semuanya tidak menunjukkan harapan untuk dapat dikomersialkan walaupun secara teknis semua proses ini terbukti dapat dilaksanakan.

Sampai akhirnya Haber dan Nernst melakukan penelitian yang menyeluruh tentang keseimbangan antara nitogen dan hidrogen di bawah tekanan sehingga membentuk amonia. Dari penelitian ini pula didapatkan beberapa katalis yang sesuai. Reaksi ini sebenarnya membutuhkan tekanan sistem yang tinggi, tetapi pada masa itu peralatan yang memadai belum ada dan mereka merancang peralatan baru untuk reaksi tekanan tinggi (salah satu sumbangan dari perkembangan industri baru ini).

Bukan peralatan tekanan tinggi saja yang akhirnya tercipta karena dipicu oleh tuntutan industri nitrogen ini. Haber dan Bosch, ilmuwan lain yang bekerjasama dengan Haber, juga mengembangkan proses yang lebih efisien dalam usahanya menghasilkan hidrogen dan nitrogen murni. Proses sebelumnya adalah dengan elektrolisis air untuk menghasilkan hidrogen murni, dan distilasi udara cair untuk mendapatkan nitrogen murni yang kedua usaha ini masih terlalu mahal untuk diaplikasikan dalam mengkomersialkan proses baru pembuatan amonia mereka. Maka mereka menciptakan proses lain yang lebih murah.

Usaha bersama mereka mencapai kesuksesan pada tahun 1913 ketika berhasil membentuk amonia pada tekanan tinggi. Proses baru ini masih memerlukan banyak energi namun pengembangan lebih lanjut terus dilakukan. Dengan cepat proses ini berkembang melebihi proses sintetis senyawa nitrogen lainnya, dan menjadi dominan sampai sekarang dengan perbaikan-perbaikan besar masih berlanjut.

Bahan baku

Bahan baku utama yang banyak digunakan dalam industri nitrogen adalah udara, air, hidrokarbon dan tenaga listrik. Batubara dapat menggantikan hidrokarbon namun membutuhkan penanganan yang lebih rumit, sehingga proses menjadi kompleks dan berakibat pada mahalnya biaya operasi.

Penggunaan dan ekonomi

Dari semua macam senyawa nitrogen, amonia adalah senyawa nitogen yang paling penting. Amonia merupakan salah satu senyawa dasar nitogen yang dapat direaksikan dengan berbagai senyawa yang berbeda selain proses pembuatan amonia yang sudah terbukti ekonomis dan efisiensinya yang sampai sekarang terus ditingkatkan. Sebagian besar amonia diperoleh dengan cara pembuatan sintetis di pabrik dan sebagian kecilnya diperoleh dari hasil samping suatu reaksi.

Penggunaan gas amonia bermacam-macam ada yang langsung digunakan sebagai pupuk, pembuatan pulp untuk kertas, pembuatan garam nitrat dan asam nitrat, berbagai jenis bahan peledak, pembuatan senyawa nitro dan berbagai jenis refrigeran. Dari gas ini juga dapat dibuat urea, hidrazina dan hidroksilamina.

Gas amonia banyak juga yang langsung digunakan sebagai pupuk, namun jumlahnya masih terlalu kecil untuk menghasilkan jumlah panen yang maksimum. Maka dari itu diciptakan pupuk campuran, yaitu pupuk yang mengandung tiga unsur penting untuk tumbuhan (N + P2O5 + K2O). Pemakaian yang intensif diharapkan akan menguntungkan semua pihak.

 

Amonia Sintetik

Amonia kualitas komersial meliputi NH3 cair murni dan yang larut dalam air dengan konsentrasi 28 %NH3. Transportasi bahan ini sebagian besar memakai tangki silinder dan sebagian lagi ada yang langsung disalurkan melalui pipa. Belakangan ini pemakaian pipa mulai berkembang pesat, terutama dari pusat produksi ke pusat distribusi yang keseluruhan panjangnya bisa mencapai 1.000 Km[1].

 

Reaksi dan keseimbangan

2N2(g) + 3H2(g) ==> 2NH3(g)

Karena molekul produk amonia mempunyai volum yang lebih kecil dari jumlah volum reaktan maka keseimbangan akan bertambah ke arah amonia dengan peningkatan tekanan. Peningkatan suhu reaksi menyebabkan memberikan efek yang sebaliknya terhadap keseimbangan karena reaksi bersifat eksotermis, namun memberikan efek positif terhadap laju reaksi. Maka dari itu perlu dihitung suhu optimal agar menghasilkan keuntungan yang maksimum.

Laju dan katalis reaksi

Agar peralatan dapat dibuat sekompak mungkin, maka perlu dipikirkan pemberian katalis agar laju reaksi dapat berjalan dengan cepat karena reaksi hidrogen dan nitrogen berjalan sangat lambat.

Banyak jenis katalis yang digunakan secara komersial di berbagai pabrik, namun yang umum digunakan adalah katalis besi dengan tambahan banyak promotor seperti oksida aluminium, zirkonium, silikon dengan konsentrasi 3 % atau oksida kalium sekitar 1 %.

Prosedur pembuatan

Pembuatan amonia terdiri dari enam tahap

  1. Pembuatan gas-gas pereaksi
  2. Pemurnian
  3. Kompresi
  4. Reaksi katalitik
  5. Pengumpulan amonia yang terbentuk
  6. Resirkulasi

Biaya pembuatan amonia sangat tergantung pada tekanan yang digunakan, suhu dan katalis selain bahan yang digunakan.

 

 

Amonium nitrat

Amonium nitrat atau dengan sebutan NH4NH3 (ammonium nitrate) dapat dibuat dengan amonia dan asam nitrat sebagai bahan bakunya. proses pembuatan amonium nitrat pun ada beberapa macam antara lain :

1. Proses Prilling

2. Proses Kristalisasi, dan

3. Proses Stengel atau Granulasi

Dari ke-tiga tahap tersebut, adalah proses kristalisasilah yang paling mudah; prosesnya; bahan baku amonia dan asam nitrat masuk ke reaktor dengan bentuk fasenya adalah amonia masih berupa gas dan asam nitrat telah berupa fase liquid. dari reaktor semua bahan baku tersebut di lanjutkan ke evaporator lalu dikristalizer dan akhirnya di separator dan jadilah amonium nitrat.

Siklus nitrogen adalah suatu proses konversi senyawa yang mengandung unsur nitrogen menjadi berbagai macam bentuk kimiawi yang lain. Transformasi ini dapat terjadi secara biologis maupun non-biologis. Beberapa proses penting pada siklus nitrogen, antara lain fiksasi nitrogen, mineralisasi, nitrifikasi, denitrifikasi.

Walaupun terdapat sangat banyak molekul nitrogen di dalam atmosfir, nitrogen dalam bentuk gas tidaklah reaktif.[1] Hanya beberapa organisme yang mampu untuk mengkonversinya menjadi senyawa organik dengan proses yang disebut fiksasi nitrogen.

Fiksasi nitrogen yang lain terjadi karena proses geofisika, seperti terjadinya kilat. Kilat memiliki peran yang sangat penting dalam kehidupan, tanpanya tidak akan ada bentuk kehidupan di bumi. Walaupun demikian, sedikit sekali makhluk hidup yang dapat menyerap senyawa nitrogen yang terbentuk dari alam tersebut. Hampir seluruh makhluk hidup mendapatkan senyawa nitrogen dari makhluk hidup yang lain. Oleh sebab itu, reaksi fiksasi nitrogen sering disebut proses topping-up atau fungsi penambahan pada tersedianya cadangan senyawa nitrogen.

Vertebrata secara tidak langsung telah mengkonsumsi nitrogen melalui asupan nutrisi dalam bentuk protein maupun asam nukleat. Di dalam tubuh, makromolekul ini dicerna menjadi bentuk yang lebih kecil yaitu asam amino dan komponen dari nukleotida, dan dipergunakan untuk sintesis protein dan asam nukleat yang baru, atau senyawa lainnya.

Sekitar setengah dari 20 jenis asam amino yang ditemukan pada protein merupakan asam amino esensial bagi vertebrata, artinya asam amino tersebut tidak dapat dihasilkan dari asupan nutrisi senyawa lain, sedang sisanya dapat disintesis dengan menggunakan beberapa bahan dasar nutrisi, termasuk senyawa intermediat dari siklus asam sitrat.

Asam amino esensial disintesis oleh organisme invertebrata, biasanya organisme yang mempunyai lintasan metabolisme yang panjang dan membutuhkan energi aktivasi lebih tinggi, yang telah punah dalam perjalanan evolusi makhluk vertebrata.

Nukleotida yang diperlukan dalam sintesis RNA maupun DNA dapat dihasilkan melalui lintasan metabolisme, sehingga istilah “nukleotida esensial” kurang tepat. Kandungan nitrogen pada purina dan pirimidina yang didapat dari asam amino glutamina, asam aspartat dan glisina, layaknya kandungan karbon dalam ribosa dan deoksiribosa yang didapat dari glukosa.

Kelebihan asam amino yang tidak digunakan dalam proses metabolisme akan dioksidasi guna memperoleh energi. Biasanya kandungan atom karbon dan hidrogen lambat laun akan membentuk CO2 atau H2O, dan kandungan atom nitrogen akan mengalami berbagai proses hingga menjadi urea untuk kemudian diekskresi.

Setiap asam amino memiliki lintasan metabolismenya masing-masing, lengkap dengan perangkat enzimatiknya.

 

 

Siklus urea

Pada eukariota, siklus urea (bahasa Inggris: urea cycle, ornithine cycle) merupakan bagian dari siklus nitrogen, yang meliputi reaksi konversi amonia menjadi urea. Siklus ini ditemukan pertama kali oleh Hans Krebs dan Kurt Henseleit pada tahun 1932.

Pada mamalia, siklus urea terjadi di dalam hati, produk urea kemudian dikirimkan ke organ ginjal untuk diekskresi. Dua jenjang reaksi pada siklus urea terjadi di dalam mitokondria.[2] Ringkasan reaksi siklus urea adalah:[3]

 

 

Amonia

Amonia merupakan produk dari reaksi deaminasi oksidatif yang bersifat toksik. Pada manusia, kegagalan salah satu jenjang pada siklus urea dapat berakibat fatal, karena tidak terdapat lintasan alternatif untuk menghilangkan sifat toksik tersebut selain mengubahnya menjadi urea. Defisiensi enzimatik pada siklus ini dapat mengakibatkan simtoma hiperamonemia yang dapat berujung pada kelainan mental, kerusakan hati dan kematian. Sirosis pada hati yang diakibatkan oleh konsumsi alkohol berlebih terjadi akibat defisiensi enzim yang menghasilkan Sarbamil fosfat pada jenjang reaksi pertama pada siklus ini.

Ikan mempunyai rasio amonia yang rendah di dalam darah, karena amonia diekskresi sebagai gugus amida dalam senyawa glutamina. Reaksi hidrolisis pada glutamina akan menkonversinya menjadi asam glutamat dan melepaskan gugus amonia.

Sedangkan manusia hanya mengekskresi sedikit sekali amonia, yang dikonversi oleh asam di dalam urin menjadi ion NH4+, sebagai respon terhadap asidosis karena amonia memiliki kapasitas seperti larutan penyangga yang menjaga pH darah dengan menetralkan kadar asam yang berlebih.

Urea

Urea merupakan zat diuretik higroskopik dengan menyerap air dari plasma darah menjadi urin. Kadar urea dalam darah manusia disebut BUN (bahasa Inggris: Blood Urea Nitrogen). Peningkatan nilai BUN terjadi pada simtoma uremia dalam kondisi gagal ginjal akut dan kronis atau kondisi gagal jantung dengan konsekuensi tekanan darah menjadi rendah dan penurunan laju filtrasi pada ginjal. Pada kasus yang lebih buruk, hemodialisis ditempuh untuk menghilangkan larutan urea dan produk akhir metabolisme dari dalam darah.

Pada hewan seperti burung dan reptil yang harus mencadangkan air di dalam tubuhnya, nitrogen diekskresi sebagai asam urat yang bersenyawa dengan sedikit kandungan air. Sedang pada manusia, asam urat tidak disintesis dari amonia, melainkan dari adenina dan guanina yang terdapat pada berbagai nukleotida. Asam urat biasanya diekskresi dalam jumlah sedikit, melalui urin. Kadar asam urat dalam darah dapat meningkat pada penderita gangguan ginjal dan leukimia. Bentuk garam dari asam urat dapat mengendap menjadi batu ginjal maupun batu kemih. Pada artritis, endapan garam dari asam urat terjadi pada tulang rawan yang terdapat pada persendian.

Jenjang reaksi

Sarbamil fosfat sintetase, sebuah enzim, merupakan katalis pada reaksi dengan substrat NH3, CO2 dan ATP menjadi sarbamil fosfat,

 

yang kemudian diaktivasi oleh asam N-asetilglutamat yang terbentuk dari asam glutamat dan asetil-KoA dengan enzim N-asetilglutamat sintetase. N-asetilglutamat merupakan regulator yang penting dalam ureagenesis selain arginina, kortikosteroid dan protein yang lain.

Reaksi kondensasi yang terjadi pada ornitina lantas memicu konversi sarbamil fosfat menjadi sitrulina dengan bantuan enzim ornitina transarbamilase.

Kemudian sitrulina dilepaskan dari dalam matriks menuju sitoplasma, dan kondensasi terjadi dengan asam aspartat dan enzim argininosuksinat sintetase, membentuk asam argininosuksinat, yang kemudian diiris oleh argininasuksinat liase menjadi asam fumarat dan arginina. Asam fumarat akan dioksidasi dalam siklus sitrat di dalam mitokondria, sedangkan arginina akan teriris menjadi urea dan ornitina dengan enzim arginase hepatik. Baik argininosuksinat liase maupun arginase diinduksi oleh rasa lapar, dibutiril cAMP dan kortikosteroid.

Nitrogen oksida sering disebut dengan NOx karena oksida nitrogen mempunyai 2 bentuk yang sifatnya berbeda, yakni gas NO2 dan gas NOx. Sifat gas NO2 adalh berwarna dan berbau, sedangakn gas NO tidak berwarna dan tidak berbau. Warna gas NO2 adalah merah kecoklatan dan berbau tajam menyengat hidung.

Kadar NOx diudara daearh perkotaan yang berpenduduk padat akan lebih tinggi dari daerah pedesaan yang berpenduduk sedikit. Hal ini disebabkan karena berbagai macam kegiatan yang menunjang kehidupan manusia akan menambah kadar NOx di udara, seperti transportasi, generator pembangkit listrik, pembuangan sampah dan lain-lain.

Pencemaran gas NOx diudara teruatam berasal dari gas buangan hasil pembakaran yang keluar dari generator pembangkit listrik stasioner atau mesin-mesin yang menggunakan bahan bakar gas alami. Keberadaan NOx diudara dapat dipengaruhi oleh sinar matahari yang mengikuti daur reaksi fotolitik NO2 sebagai berikut :

NO2 + sinar matahari            →            NO + O

O + O2 →                       O3 (ozon)

O3 + NO                   →                         NO2 + O2

Ada dua cara untuk menghindari pembakaran tidak sempurna, maka dilakukan 2 proses pembakaran yaitu :

1. Bahan bakar dibakar pada temperatur tinggi dengan sejumlah udara sesuai dengan persamaan stoikiometri, misalnya dengan 90 -95% udara. Pembakaran NO dibatasi tidak dengan adanya kelebihan udara.

2. Bahan bakar dibakar sempurna pada suhu relatif rendah dengan udara berlebih. Suhu rendah menghindarkan pembentukan NO.

Kedua proses ini menurunkan pembentukan NO sampai 90%. NO2 pada manusia dapat meracuni paru-paru, kadar 100 ppm dapat menimbulkan kematian, 5 ppm setelah 5 menit menimbulkan sesak nafas.

Dampak Pencemaran Nitrogen Oksida (NOx)

Gas nitrogen oksida (NOx) ada dua macam , yakni gas nitrogen monoksida (NO) dan gas nitrogen dioksida (NO2). Kedua macam gas tersebut mempunyai sifat yang berbeda dan keduanya sangat berbahaya bagi kesehatan. Gas NO yang mencemari udara secara visual sulit diamati karena gas tersebut tidak berwarna dan tidak berbau. Sedangkan gas NO2 bila mencemari udara mudah diamati dari baunya yang sangat menyengat dan warnanya coklat kemerahan. Udara yang mengandung gas NO dalam batas normal relatif aman dan tidak berbahaya, kecuali jika gas NO berada dalam konsentrasi tinggi. Konsentrasi gas NO yang tinggi dapat menyebabkan gangguan pada system saraf yang mengakibatkan kejang-kejang. Bila keracunan ini terus berlanjut akan dapat menyebabkan kelumpuhan. Gas NO akan menjadi lebih berbahaya apabila gas itu teroksidasi oleh oksigen sehinggga menjadi gas NO2.

Udara yang telah tercemar oleh gas nitrogen oksida tidak hanya berbahaya bagi manusia dan hewan saja, tetapi juga berbahaya bagi kehidupan tanaman. Pengaruh gas NOx pada tanaman antara lain timbulnya bintik-bintik pada permukaan daun. Pada konsentrasi yang lebih tinggi gas tersebut dapat menyebabkan nekrosis atau kerusakan pada jaringan daun. Dalam keadaan seperti ini daun tidak dapat berfungsi sempurna sebagai temapat terbentuknya karbohidrat melalui proses fotosintesis. Akibatnya tanaman tidak dapat berproduksi seperti yang diharapkan. Konsentrasi NO sebanyak 10 ppm sudah dapat menurunkan kemampuan fotosintesis daun sampai sekitar 60% hingga 70%.

Pencemaran udara oleh gas NOx dapat menyebabkan timbulnya Peroxy Acetil Nitrates yang disingkat dengan PAN. Peroxi Acetil Nitrates ini menyebabkan iritasi pada mata yang menyebabkan mata terasa pedih dan berair. Campuran PAN bersama senyawa kimia lainnya yang ada di udara dapat menyebabkan terjadinya kabut foto kimia atau Photo Chemistry Smog yang sangat menggangu lingkungan.

Pengaruh bagi kesehatan

Nitrogen dioksida merupakan polutan udara yang dihasilkan pada proses pembakaran. Ketika nitrogen dioksida hadir, nitrogen oksida juga ditemukan ; gabungan dari NO dan NO2 secara kolektif mengacu kepada nitrogen oksida (NOx).

Pada sangat konsentrasi tinggi, dimana mungkin hanya dialami pada kecelakaan industri yang fatal, paparan NO2 dapat mengakibatkan kerusakan paru-paru yang berat dan cepat. Pengaruh kesehatan mungkin juga terjadi pada konsentrasi ambient yang jauh lebih rendah seperti pada pengamatan selama peristiwa polusi di kota. Bukti yang didapatkan menyarankan bahwa penyebaran ambient kemungkinan akibat dari pengaruh kronik dan akut, khususnya pada sub-grup populasi orang yang terkena asma.

NO2 terutama berkelakuan sebagai agen pengoksidasi yang kemungkinan merusak membran sel dan protein. Pada konsentrasi tinggi, saluran udara akan menyebabkan peradangan yang akut. Ditambah lagi, penyebaran dalam waktu-singkat berpengaruh terhadap peningkatan resiko infeksi saluran pernapasan. Meskipun banyak pengontrolan penyebaran yang dilakukan, fakta secara jelas mendefinisikan hubungan antara konsentrasi atau dosis dan umpan baliknya tidaklah cukup.

Untuk penyebaran yang akut, hanya konsentrasi yang sangat tinggi (>1880 Mg/m3, 1 ppm) mempengaruhi kesehatan orang ; bilamana, orang dengan asma atau penyakit paru-paru yang akut lebih rentan pada konsentrasi lebih rendah.

 

Referensi

  1. ^ Appl, P.: A Brief History of Ammonia Production from Early to the Present, Nitrogen Mar./Apr., 1976
  2. ^ Brykowski, F.J. (ed.):Ammonia and Synthesis Gas, Noyes, Park Ridge, N.J., 1981.
  3. ^ Strelzoff, S.: Technology and Manufacture of Ammonia, Wiley-Interscience, New York, 1981.
  4. ^ Varicini, C.A. and D. J. Borgars: Synthesis of Ammonia, CRC.
  5. ^ (en)Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter (2002). Molecular Biology of the Cell – How Cells Obtain Energy from Food : Amino Acids and Nucleotides Are Part of the Nitrogen Cycle (edisi ke-4). Garland Science. ISBN 0-8153-3218-1. http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mboc4&part=A287#A307. Diakses pada 16 Juli 2010.
  6. ^ (en)George J Siegel, Bernard W Agranoff, R Wayne Albers, Stephen K Fisher, dan Michael D Uhler. (1999). Basic Neurochemistry – Molecular, Cellular and Medical Aspects (edisi ke-6). Lippincott-Raven. ISBN 0-397-51820-X. http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=bnchm&part=A3134. Diakses pada 18 Juli 2010.
  7. ^ (en)“Urea Cycle”. Elmhurst College, Charles E. Ophardt. http://www.elmhurst.edu/~chm/vchembook/633ureacycle.html. Diakses pada 17 Juli 2010.

 

Satu Tanggapan to “Nitrogen”

  1. trimakasiii mmbntuu tugas sayyaa:)

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: